jueves, 18 de agosto de 2016

MEDIDAS DE DISPERSION

Las medidas de dispersión, también llamadas medidas de variabilidad, muestran la variabilidad de una distribución, indicando por medio de un número, si las diferentes puntuaciones de una variable están muy alejadas de la media. Cuanto mayor sea ese valor, mayor será la variabilidad, cuanto menor sea, más homogénea será a la media. Así se sabe si todos los casos son parecidos o varían mucho entre ellos.


Para calcular la variabilidad que una distribución tiene respecto de su media, se calcula la media de las desviaciones de las puntuaciones respecto a la media aritmética. Pero la suma de las desviaciones es siempre cero, así que se adoptan dos clases de estrategias para salvar este problema. Una es tomando las desviaciones en valor absoluto (desviación media) y otra es tomando las desviaciones al cuadrado (varianza).





MEDIDAS DE POSICION

Tanto las medidas de tendencia central como de dispersión en ocasiones son insuficientes sobre todo cuando en ocasiones deseamos presentar el análisis con respecto a la posición que ocupa la información que para nosotros resulta relevante, así por ejemplo, podemos hablar de dividir la información a la mitad, realizado por la mediana, en cuatro parte, en cinco, en diez o quizá en otro tipo de divisiones.



A continuación se presentan algunas medidas conocidas como de posición.

MEDIDAS DE TENDENCIA CENTRAL


Medidas de tendencia central: Media, Mediana, Moda

El promedio de notas es muy importante.
Supóngase que un determinado alumno obtiene 35 puntos en una prueba de matemática. Este puntaje, por sí mismo tiene muy poco significado a menos que podamos conocer el total de puntos que obtiene una persona promedio al participar en esa prueba, saber cuál es la calificación menor y mayor que se obtiene, y cuán variadas son esas calificaciones.

En otras palabras, para que una calificación tenga significado hay que contar con elementos de referencia generalmente relacionados con ciertos criterios estadísticos.


Las medidas de tendencia central (media, mediana y moda) sirven como puntos de referencia para interpretar las calificaciones que se obtienen en una prueba.

TABLAS DE DISTRIBUCIÓN DE FRECUENCIA Y REPRESENTACIONES GRAFICAS

Una distribución de frecuencias o tabla de frecuencias es una ordenación en forma de tabla de los datos estadísticos, asignando a cada dato su frecuencia correspondiente.

Frecuencia absoluta
La frecuencia absoluta es el número de veces que aparece un determinado valor en un estudio estadístico.

Se representa por fi.

La suma de las frecuencias absolutas es igual al número total de datos, que se representa por N.

igualdad


Para indicar resumidamente estas sumas se utiliza la letra griega Σ (sigma mayúscula) que se lee suma o sumatoria.




IMPORTANCIA DEL ESTUDIO DE LA ESTADISTICA

La estadística es la parte de las matemáticas que se ocupa de los métodos para recoger, organizar, resumir y analizar datos, así como para sacar conclusiones válidas y tomar decisiones razonables basadas en tal análisis.

En la antigüedad los egipcios hacían censos de las personas y de los bienes inmuebles que permitían conocer la distribución de las propiedades para volver a restituirlos después de la inundación anual que provoca el río Nilo. En la biblia hay referencias a censos del pueblo judío. Los griegos y los romanos hacían censos de personas y de propiedades.
Un economista y profesor universitario llamado Gottfried Achenwall (prusiano, 1719-1772) fue quien forjó la palabra "estadística" con el significado de "ciencia de las cosas que pertenecen al Estado". Achenwall dijo que "la política enseña cómo deben ser los Estados, la Estadística explica cómo son realmente".
Dentro del campo de la estadística pueden estudiarse características de la sociedad, de las personas, de los animales, de las plantas, de determinados productos o de cualquier objeto de interés humano en general, bien lejos del concepto de las "cosas que pertenecen al Estado".